
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
SEPTEMBER 2014

2. REPORT TYPE
JOURNAL ARTICLE (Post Print)

3. DATES COVERED (From - To)
APR 2013 – MAY 2014

4. TITLE AND SUBTITLE

PREDICTIVE FEATURE SELECTION FOR GENETIC POLICY
SEARCH

5a. CONTRACT NUMBER
IN-HOUSE

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Steven Loscalzo, Robert Wright, Lei Yu

5d. PROJECT NUMBER
S2MA

5e. TASK NUMBER
MI

5f. WORK UNIT NUMBER
IH

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site/RISC
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site/RISC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

 AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2014-044

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA Case Number: 88ABW-2014-2803
DATE CLEARED: June 6, 2014
13. SUPPLEMENTARY NOTES
© 2012 SPRINGER US. Journal: Autonomous Agents and Multi-Agent Systems, Print ISSN 1387-2532. This work is
copyrighted. One or more of the authors is a U.S. Government employee working within the scope of their Government
job; therefore, the U.S. Government is joint owner of the work and has the right to copy, distribute, and use the work. All
other rights are reserved by the copyright owner.
14. ABSTRACT
Automatic learning of control policies is becoming increasingly important to allow autonomous agents to operate
alongside, or in place of, humans in dangerous and fast-paced situations. Reinforcement learning (RL), including genetic
policy search algorithms, comprise a promising technology area capable of learning such control policies. Unfortunately,
RL techniques can take prohibitively long to learn a sufficiently good control policy in environments described by many
sensors (features). We argue that in many cases only a subset of available features are needed to learn the task at
hand, since others may represent irrelevant or redundant information. In this work, we propose a predictive feature
selection framework that analyzes data obtained during execution of a genetic policy search algorithm to identify relevant
features on-line. This serves to constrain the policy search space and reduces the time needed to locate a sufficiently
good policy by embedding feature selection into the process of learning a control policy. We explore this framework
through an instantiation called predictive feature selection embedded in neuroevolution of augmenting topology (NEAT),
or PFS-NEAT. In an empirical study, we demonstrate that PFS-NEAT is capable of enabling NEAT to successfully find
good control policies in two benchmark environments, and show that it can outperform three competing feature selection
algorithms, FS-NEAT, FD-NEAT, and SAFS-NEAT, in several variants of these environments.
15. SUBJECT TERMS
Genetic policy search; Feature selection; Dimensionality reduction; Reinforcement learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN LOSCALZO

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

35

Journal of Autonomous Agents and Multi-Agent Systems manuscript No.

(will be inserted by the editor)

Predictive Feature Selection for Genetic Policy Search

Steven Loscalzo, Robert Wright, and Lei Yu

May 22, 2014

Abstract Automatic learning of control policies is becoming increasingly important to al-

low autonomous agents to operate alongside, or in place of, humans in dangerous and fast-

paced situations. Reinforcement Learning (RL), including genetic policy search algorithms,

comprise a promising technology area capable of learning such control policies. Unfortu-

nately, RL techniques can take prohibitively long to learn a sufficiently good control policy

in environments described by many sensors (features). We argue that in many cases only a

subset of available features are needed to learn the task at hand, since others may represent

irrelevant or redundant information. In this work, we propose a predictive feature selection

framework that analyzes data obtained during execution of a genetic policy search algorithm

to identify relevant features on-line. This serves to constrain the policy search space and re-

duces the time needed to locate a sufficiently good policy by embedding feature selection

into the process of learning a control policy. We explore this framework through an instanti-

ation called Predictive Feature Selection embedded in NEAT, or PFS-NEAT. In an empirical

study, we demonstrate that PFS-NEAT is capable of enabling NEAT to successfully find

good control policies in two benchmark environments, and show that it can outperform three

competing feature selection algorithms, FS-NEAT, FD-NEAT, and SAFS-NEAT, in several

variants of these environments.

Keywords Genetic Policy Search, Feature Selection, Dimensionality Reduction, Rein-

forcement Learning

Steven Loscalzo

AFRL Information Directorate, 26 Electronic Pkwy., Rome, New York 13441

E-mail: steven.loscalzo@us.af.mil

Robert Wright

Binghamton University, 4400 Vestal Pkwy. East, Binghamton, New York 13902

E-mail: rwright3@binghamton.edu

Lei Yu

Binghamton University, 4400 Vestal Pkwy. East, Binghamton, New York 13902

E-mail: lyu@cs.binghamton.edu

1

2 Steven Loscalzo, Robert Wright, and Lei Yu

1 Introduction

Recent trends in autonomous systems research have illustrated the possibilities of deploying

agents to complete dangerous or rapid-turnaround tasks, such as search-and-rescue, network

intrusion defense, and data center management (Doroodgar and Nejat, 2010; Cannady, 2000;

Servin and Kudenko, 2008; Tesauro et al, 2007). These systems require a control policy for

each agent to follow that selects an appropriate response (action) for a given system state.

Autonomous systems capable of learning their own control policies with limited manual

intervention are becoming increasingly desirable as more complex tasks in dynamic and

high-tempo environments are explored. Reinforcement Learning (RL) methods are of great

interest because they require only the presence of a reward signal to indicate whether the

chosen action was favorable or not, and do not need to know any system dynamics a priori.

While RL methods are attractive due to their highly autonomous nature, they all suf-

fer from the so-called “curse of dimensionality”: the computational time and interactions

required to learn an optimal control policy is exponential in the number of sensors (state

variables) that define an agent’s view of the system (Bellman, 2003). This is expected to be

an increasingly challenging problem as the environments where autonomous agents operate

become more complex (i.e., contain more sensors of increased diversity). In this work we

seek to address this problem as it applies to genetic policy search algorithms, one type of RL

method. Genetic policy search algorithms are studied here since they have been shown to be

broadly successful on a wide range of RL benchmark problems (Stanley and Miikkulainen,

2002; Böhm et al, 2004). In addition, they are capable of handling continuous and discrete

state and action spaces without the need for additional abstraction devices as is typically the

case for value iteration, policy iteration, and other direct policy search RL methods.

Feature selection has long been used by supervised learning for classification and regres-

sion problems. It can be used to automatically identify a compact set of relevant features that

approximate the information content of the full data set (Guyon and Elisseeff, 2003; Liu and

Yu, 2005). These techniques address the curse of dimensionality by removing features which

appear irrelevant to the task at hand, and also excluding those redundant to other features

that have already been selected. Irrelevant or redundant state variables may also be present

in RL domains for various reasons. They may result from faulty sensors, availability of a

richer suite of sensors than necessary to perform a single given task, or broadcast sensor

readings from many agents co-located in the same environment. This observation gives rise

to the analogue of feature selection in supervised learning: state variable selection in RL.

For brevity, we will often use the term “feature” to refer to a state variable in the context of

RL. This research area has received some attention in recent years (Hachiya and Sugiyama,

2010; Nouri and Littman, 2010), but feature selection has primarily been done with data

collected off-line (i.e., before the agent begins operation in the system). Some works have

incorporated feature selection with genetic policy search algorithms. The majority of these

works solely consider evolved policy performance to guide the feature selection process,

and do not incorporate information from observed sample data that could be used to im-

prove feature selection decisions (Whiteson et al, 2005; Whiteson and Stone, 2006; Wright

et al, 2011). Loscalzo et al (2012) does drive the selection process using observed sam-

ple data, but the feature relevance measure used is domain-specific and is unlikely to yield

acceptable results in general.

We propose a generally applicable predictive feature selection framework for genetic

policy search algorithms. This framework interleaves feature selection phases throughout

the policy search process, using data observed during policy fitness evaluations to refine

the selected feature subset. This mechanism restricts the policy search to consider policy

2

Predictive Feature Selection for Genetic Policy Search 3

functions that contain only the most likely relevant state variable inputs. Constraining the

search in this way allows a more rapid identification of good policies defined over a smaller

set of state variables as compared to searching for the optimal policy in the entire input

space. To this end, two challenging problems need to be overcome: when to alter the feature

subset currently in use by the genetic policy search algorithm, and how to measure feature

relevance. We offer an instantiation of the framework that addresses these challenges in

the form of the Predictive Feature Selection embedded in NEAT (PFS-NEAT) algorithm.

NeuroEvolution of Augmenting Topology (NEAT) was chosen as our base genetic policy

search algorithm due to its widespread successes, and prior feature selection research that

has been based off of it (Stanley and Miikkulainen, 2002).

We demonstrate the effectiveness of PFS-NEAT in two benchmark simulation environ-

ments. First, a racing domain described by continuous state and action spaces demanding

that the agent make precise control decisions while knowing only what is visible from the

driver’s perspective, and second, a variant of the classical RL pole balancing domain, the

double inverted pendulum balancing problem (Gomez and Miikkulainen, 1999), where the

agent must learn a policy in a continuous state space using discrete actions to control the

motions of a cart in order to balance two poles. We empirically show that PFS-NEAT is able

to learn near optimal control policies in both environments even as the number of irrelevant

features increases. The algorithm is also able to identify feature subsets that are comprised

of higher fractions of relevant sensors as compared to FS-NEAT (Whiteson et al, 2005),

FD-NEAT (Tan et al, 2009), and SAFS-NEAT (Loscalzo et al, 2012), which can cause PFS-

NEAT to outperform these competitors. These experiments illustrate that PFS-NEAT is an

effective feature selection algorithm that is suited to scaling up genetic policy search tech-

niques to high-dimensional problems.

The rest of this paper is organized as follows: background on RL, feature selection, and

relevant NEAT-based feature selection algorithms is presented Section 2. The PFS-NEAT al-

gorithm is described in detail in Section 3. Section 4 provides an empirical study of the al-

gorithm on two benchmark domains. Section 5 concludes this paper and outlines possible

future directions.

2 Background

This work is positioned between the RL and feature selection domains, and so we briefly

introduce both areas here. Section 2.1 introduces background on RL, and Section 2.2 in-

troduces related work on scaling up RL by function approximation. Section 2.3 introduces

background on feature selection and recent work on dimensionality reduction for RL. An in-

troduction to the NEAT genetic policy search algorithm is given in Section 2.4. Section 2.5

introduces feature selection enabled variants of the NEAT algorithm, all of which are closely

related to this work.

2.1 Reinforcement Learning

In general, Reinforcement Learning (RL) allows an agent to learn how to optimally com-

plete a task in an environment from past experimence. The learning problem is typically

modeled as a Markov Decision Process (MDP) and described by tuples 〈S,A,P,R,γ〉 (Put-

erman, 1994). In this work we make the general assumption that problems are described by

3

4 Steven Loscalzo, Robert Wright, and Lei Yu

a factored state space S such that S = S1× S2 × . . .× Sn for a problem with n state vari-

ables (Boutilier et al, 1999). Similarly, we consider the action space A to be represented as

A = A1×A2× . . .×Am for a problem with m distinct action variables. We denote the set of

all state variables by S= {S1,S2, . . . ,Sn}.
For every state s ∈ S a point in the action space a ∈ A must be selected by the agent,

assigning a value to each of m simultaneous action decisions to be made in a state. Each

state s is an n dimensional vector 〈s1,s2, . . . ,sn〉 where each component si takes a value in

the domain of its respective state variable (feature) Si. The notation and semantics for each

action a is analogous to this description. The transition function P(s′|s,a) ∈ [0,1] governs

the dynamics of the environment, or the probability of arriving in state s′ after taking action

a in state s. The reward function R(r|s,a,s′) is the expected value of the immediate reward

r ∈ R given the transition from state s to s′ on action a. Both P and R are assumed to be

unknown by the agent in our work.

The agent interacts with the environment in order to learn a control policy function,

π(s) : S 7→ A, which describes the action to take in a given state. Each policy has an associ-

ated value function that defines the expected long-term value of taking action a in state s and

following policy π thereafter: Qπ(s,a) =Eπ

[

∑k=0 γkrt+k+1|st = s, at = a], where γ ∈ (0,1]
is the discount on rewards (Sutton and Barto, 1998). The agent seeks to learn the optimal

policy function, π∗, which maximizes the expected value received when starting in any s and

following π∗ until a terminal state is reached. While learning π∗, the agent must repeatedly

visit each state s ∈ S to build an accurate estimate of the long term rewards received by

taking each available action a ∈ A. This task becomes infeasible when either the size of

the state space, |S|, or action space, |A|, is very large or infinite. This is a manifestation of

the well known “curse of dimensionality” problem (Bellman, 2003), since the number of

samples required to learn π∗ is exponential in the number of dimensions of the state space.

2.2 Function Approximation

Function approximation techniques have allowed a measure of scalability to RL algorithms

(Sutton and Barto, 1998), and have been receiving increased attention recently. Many of

these approximation techniques for RL are centered on reducing the representation size of

an accurate value function approximation. Function approximation methods use a model

(such as a neural network or linear model) whose number of free parameters, k, is much

smaller than the joint state-action space, k≪ |S×A|, to approximate value functions. Sev-

eral approximation approaches selectively grow a set of basis functions to account for error

in the current approximation (Parr et al, 2007; Jung and Stone, 2009). Other approaches

purposefully over-specify the number of basis functions in the set and use L1 regularization

methods to select a small number of these functions (Kolter and Ng, 2009; Petrik et al, 2010).

Another basis function approach exploits the graph Laplacian on the state transition function

of the given MDP to learn a minimal equivalent MDP to solve using RL (Mahadevan, 2005).

While each of these methods has been shown effective in producing value function represen-

tations capable of approximating the optimal value function, they are all acutely sensitive to

the number of state variables used to describe the state space. This is again due to the curse

of dimensionality since the number and parameters of the basis functions depend on the size

of the state space.

There are several other recent abstraction techniques that break an MDP into more read-

ily solved sub-problems. Along the lines of hierarchical and structure learning (Dietterich,

1998), work has been done to find an abstraction to reduce the size of sub-problems to make

4

Predictive Feature Selection for Genetic Policy Search 5

them easier to learn (Konidaris and Barto, 2009). This relies on the presence of a predefined

abstraction library to select the most appropriate abstraction for a sub-problem, which may

not be available in practice. Scalable RL techniques have also used learning from demonstra-

tion (Argall et al, 2009) to learn skills in a continuous state and action environment which

can be put together to form an optimal policy (Konidaris et al, 2010). Selecting which skill

to apply reduces the complexity of learning an optimal policy as compared to selecting an

action at every state. Other methods in the approximate dynamic programming area (Powell,

2011) have made progress in solving models containing both discrete and continuous state

variables (Kveton et al, 2006). These methods assume that the transition function is known,

but this is not the case for our work, rendering these methods inapplicable. Overall, many

different abstraction types exist for RL, but the size of S in either the original problem or a

sub-problem can still prevent these methods from scaling to high-dimensional environments.

2.3 Feature Selection

Feature selection attempts to find a small subset of the original features defined by the prob-

lem to produce the best performance of a learning task. It is a widely used technique to

battle the curse of dimensionality in supervised learning. In the context of RL, we consider

each state variable to be a feature in this work. Many problems include irrelevant or redun-

dant features in their descriptions, and incorporating these features can seriously degrade

the performance of a learning agent. Irrelevant features are those which convey no infor-

mation about the current learning task, and redundant features either partially or wholly

duplicate information captured by other features. Models built from compact subsets of fea-

tures which exclude irrelevant and redundant features typically generalize better than their

full-dimensional counterparts because they reduce the effect of overfitting. Many algorithms

exist for supervised feature selection (see comprehensive surveys by Guyon and Elisseeff

(2003) and Liu and Yu (2005) for more details), and they can be categorized based on how

their search and evaluation procedures operate.

In a problem with n features, there are 2n different candidate feature subsets. An exhaus-

tive search of this space to locate the smallest optimal feature subset would be too costly in

any non-trivial case, so efficient search heuristics must be used. Many heuristics have been

proposed for this task, such as beginning with an empty subset and growing it (sequential

forward search), or starting with all the features and eliminating one or more at a time (se-

quential backwards search) (Devijver and Kittler, 1982). The search can terminate when

either the subset reaches a desired size, or the candidate subset surpasses a specified qual-

ity threshold. At each step in the search, the quality of the candidate subset as well as the

prospective next subsets must be evaluated to direct the search. The evaluation process can

be broken down into three broad approaches: filter, wrapper, and embedded.

Filter algorithms evaluate the quality of feature subsets based on the intrinsic charac-

teristics of the training data independent of any learning algorithm. This approach has been

traditionally excluded from the RL scenario due to the lack of labeled training data, how-

ever, a few recent studies do suggest that filter techniques are applicable in RL (Hachiya

and Sugiyama, 2010; Castelletti et al, 2011). These approaches use observations sampled

from the environment to build up a data set, and then study the relationships between state,

action, and reward information to estimate feature relevance. Wrappers use the performance

of a learning algorithm on a feature subset to evaluate the subset. This approach is typically

infeasible for RL because of the high computational and sample costs associated with learn-

ing as many policies as candidate subsets. Embedded approaches integrate model selection

5

6 Steven Loscalzo, Robert Wright, and Lei Yu

with policy learning. These approaches enable the learning process to occur only once while

still receiving the benefits of feature selection. The embedded approach is more promising

than the wrapper approach for RL problems, since feature selection can be accomplished

while learning a policy with little additional overhead.

Several methods have recently been proposed that explicitly reduce the dimensionality

of the state space in an RL problem. Hachiya and Sugiyama (2010) proposed a mutual

information approach to identify the features that the reward function is dependent on. This

approach is reminiscent of filter feature selection methods since it requires a set of samples to

be obtained from the environment a priori, which can be problematic. The sampling method

must be able to gather samples from across the state space, which may not be possible

for on-line learning environments if a good policy is not already available. The approach

given by Castelletti et al (2011) bears some similarities in that it requires samples from

a good policy to be available before feature relevance estimation can be conducted. Both

of these approaches rely on a strong reward signal from the environment throughout the

learning process, which may not occur in some RL problems with a sparse or delayed reward

signal. Another related dimensionality reduction approach is given by Diuk et al (2009),

but this method scales exponentially with the number of problem dimensions, preventing it

from scaling to high-dimensional environments. Contrary to these approaches, our proposed

algorithm, PFS-NEAT, applies an embedded approach designed to efficiently reduce the

dimensionality of the state space in problems with high-dimensional discrete or continuous

state spaces.

Several other RL algorithms also employ dimensionality reduction techniques, though

their goal is not to find the smallest subset of features to learn the problem. Nouri and

Littman (2010) propose such an approach where samples are gathered a priori and principal

component analysis is performed to find low-dimensional subspaces to construct transi-

tion models which aid learning (Jolliffe, 2010). This approach does not guarantee that any

feature will be excluded from the problem since a principal component is a linear combi-

nation of possibly all features. The number of transition model estimation points is expo-

nential in the number of features and action values, preventing the method from scaling to

high-dimensional problems. Other research along this direction attempts to learn a dynamic

Bayesian network representation of the transition function, which may depend on a subset

of features (Vigorito and Barto, 2009). While this work does not suffer from the exponential

scaling problems of the approach proposed by Nouri and Littman (2010), it is reliant on the

estimation of parameters for potentially many Gaussian models, which is challenging.

2.4 NEAT

The goal of this work is to enable higher policy performance in an RL domain through the

use of feature selection to reduce of the effective size of the state space. As discussed in

Section 2.3, a wrapper approach for RL is too costly, while a filter approach is not gen-

erally applicable. Therefore, we pursue an embedded approach in this work. The working

mechanism of an embedded feature selection algorithm naturally depends on the choice of

a learning algorithm. There are many reinforcement learning algorithms in existence, from

simple Q-learning (Watkins and Dayan, 1992), to more contemporary learning algorithms

such as Fitted Q Iteration (Ernst et al, 2005). We elected to use the direct policy search al-

gorithm NeuroEvolution of Augmenting Topologies (NEAT) for its ease of use and ability

to handle both discrete and continuous state and action spaces without additional abstrac-

tion layers (Stanley and Miikkulainen, 2002). NEAT is not the only candidate RL algorithm

6

Predictive Feature Selection for Genetic Policy Search 7

which can learn in such diverse environments. Many recent function approximation algo-

rithms have this ability, but introduce complicated steps in their execution to extend to such

domains (Ernst et al, 2005; Nouri and Littman, 2010). Additionally, means for adapting ex-

isting learning strategies to domains with continuous action spaces have also been recently

developed (Lazaric et al, 2007; Melo and Lopes, 2008; Pazis and Lagoudakis, 2009). We

could have built our feature selection framework around one of these algorithms, but we

preferred to keep the RL component as simple yet widely applicable as possible so we could

focus on the challenges of feature selection.

Searching for an optimal policy for a problem with an infinite number of states to explore

and infinite action values to select from (in the case of continuous state and action spaces)

necessitates a function approximator to represent a policy. Neural networks (NNs) are ef-

ficient function approximators that can model complex functions to an arbitrary accuracy.

In the past, using NNs in practice was limited by the difficult manual engineering that was

required to construct a sufficiently usable NN. Neuroevolutionary approaches, which utilize

genetic algorithms to automate the process of training and/or designing NNs, mitigate these

drawbacks and allow NNs to be easily applied to RL domains (Sher, 2012). NeuroEvolution

of Augmenting Topologies (NEAT) is an RL framework based on neuroevolution developed

by Stanley and Miikkulainen (2002). The NEAT algorithm uses NNs to represent policy

functions and conducts an evolutionary search of the policy function space to locate an ap-

proximation of π∗. By evolving both the network topology and the weights of connections

between network nodes, Stanley and Miikkulainen (2002) showed that NEAT can solve typ-

ical RL benchmark problems several times faster than competing RL algorithms. Here we

give a brief overview of the NEAT algorithm; more details can be found in the original work

by Stanley and Miikkulainen (2002), and in the development of the NEAT-Q evolutionary

function approximation algorithm by Whiteson and Stone (2006).

NEAT begins with a population of simple perceptron networks and gradually builds

more complex ones through a process called complexification. Each network generated by

NEAT describes a policy for an MDP. State features are provided to the networks as real-

valued inputs, and the activation levels of output nodes prescribe the appropriate action

values to use given the state. In every generation of the evolutionary process, the networks

in the population are evaluated based on their ability to solve the MDP. In our setting, policy

evaluation takes place by having an agent follow the policy in the environment, and uses an

environment specific fitness function to assign a fitness score to the policy based on its per-

formance. Since we are searching for π∗, which is the policy that maximizes the expected

reward, the fitness function we use is the aggregate reward received by the evaluated policy.

The most fit networks survive into the next generation, and derivative networks based upon

these survivors are generated by the mutation operators. These mutation operators modify

the weights of the edges and may also add topological elements such as new nodes and

connections. These operators are activated with varying probability over the population of

networks. The results of NEAT are NNs that are automatically generated, not overly com-

plicated in terms of structure, and custom tuned for the problem at hand. The algorithm is

guided by a number of parameters that are discussed in Section 4.1.3.

2.5 Feature Selection Methods Embedded in NEAT

This section discusses four prior extensions to the NEAT algorithm, all of which provide fea-

ture selection capabilities. They are distinguishable by their feature subset search strategies

and subset evaluation measures.

7

8 Steven Loscalzo, Robert Wright, and Lei Yu

2.5.1 FS-NEAT

One limiting issue with NEAT is that it assumes that all features provided by the environment

are relevant and necessary, and it attempts to incorporate all of them into every NN in the

population. Any irrelevant or redundant features will unnecessarily complicate the networks

and slow the rate at which NEAT is able to derive an effective policy. Practically, evolution

is slowed by considering mutations to unnecessary structures in NNs, which could lead to

overly complex and inefficient networks. Worse, including such inputs increases the risk of

overfitting to these features, which could produce very fragile policies that fail on previously

unseen states. A first attempt at addressing this problem was proposed by Whiteson et al

(2005) in the form of the Feature Selective-NEAT (FS-NEAT) algorithm. This algorithm

embeds a feature selection process guided by evolution into the NEAT genetic search.

FS-NEAT differs from NEAT in that all NNs in the initial population start with a single

connection between a randomly selected input and output. Features are randomly attached

to the NNs in subsequent generations, governed by the add connection mutation operation.

This allows the algorithm to evolve a potentially good feature subset during the regular

NEAT policy search process. The evolutionary process treats the inclusion of another input

node the same as adding any other connection to the network, such as from a hidden node

to an output. One advantage of this algorithm is that it takes no additional computational

time to evaluate features beyond the standard NEAT evolutionary search for fit networks.

Relevant features are identified based on the fitness of the networks which include them,

and high fitness scores cause those networks to propagate, thereby selecting the feature into

the population. Allowing the subset search to be controlled by policy performance is an

intuitive heuristic for conducting the subset search, but it also risks selecting unnecessary

features into the set. If an irrelevant or redundant feature is present in a network which

happens to perform well, that feature will go on to be included in subsequent generations,

whether or not it contributed to the improved performance (which could have arisen due to

random chance in noisy sensor readings, or a simultaneous mutation elsewhere in the NN).

Such chance events become increasingly more likely as the ratio of relevant to irrelevant

features decreases, causing NEAT to search through an artificially large policy space during

its execution and slowing its arrival at a reasonably fit policy.

2.5.2 FD-NEAT

Feature Deselective-NEAT (FD-NEAT) follows an evolutionary feature selection strategy

similar to FS-NEAT, but biases the subset search to favor larger selected feature subsets (Tan

et al, 2009, 2012). The FD-NEAT algorithm begins with a fully connected network just as

NEAT does, and then removes connections via a remove connection mutation operation

during evolution. This feature subset search procedure is a recursive feature elimination

search with a fitness-based evaluation criterion. Such a procedure is expected to perform

well when there are few irrelevant features in the environment, and may outperform forward

searches when there are strong feature interactions in the data (Guyon et al, 2002). Just as

the FD-NEAT selection process is similar to FS-NEAT, it also shares similar benefits and

limitations. The strategy is intuitive and adds no additional overhead to the NEAT policy

search in order to perform the feature selection actions. Unfortunately, mutations may re-

move truly relevant features from the subset when the reduced subset happens to perform

well during a fitness evaluation (for the same reasons as for FS-NEAT). This outcome may

prevent the network from performing as well as possible. Additionally, evolved networks

may contain many connections to an irrelevant feature. Prior policies are biased to work

8

Predictive Feature Selection for Genetic Policy Search 9

with these extraneous features, and their removal can actually hurt the performance of the

policy. This will generally lead to larger networks than necessary in the population, slowing

the NEAT evolutionary search.

2.5.3 IFSE-NEAT

The Incremental Feature Selection Embedded in NEAT (IFSE-NEAT) algorithm was de-

veloped by the authors to address several of the limitations of the FS- and FD-NEAT algo-

rithms (Wright et al, 2011). The main difference between these algorithms and IFSE-NEAT

is the decoupling between the feature subset search and the policy search. A separate search

should prevent extraneous features being selected by chance mutations, and would tend to-

ward the most compact relevant feature subset being identified. This, in turn, would enable

NEAT to avoid searching a larger space than necessary.

IFSE-NEAT performs an incremental forward search over the set of available features,

adding a new feature every k generations of NEAT evolution. For a state space described

by n features, the algorithm starts by performing n partial runs of NEAT in parallel, with

each population using only a single unique feature. After k generations the resulting policies

are compared and the feature used by the best performing partial run gets selected into

the subset. Next, n− 1 NEAT populations are created, each formed by connecting one of

the unselected features to the best performing NN from the selected feature’s population.

Evolution continues on these populations in parallel for another k generations, and the best

performing network indicates the current size-two subset of features to use moving forward.

This process repeats until some number of generations elapses, a specific number of features

is selected, or some other termination criterion is met. This method is successful because it

allows for testing of each combination of features along the greedy incremental selection

path for k generations before committing to a feature addition. Given enough computational

resources, the algorithm can be run in similar time as the standard NEAT algorithm, but its

sample requirements are O(n2) times greater than NEAT’s sample requirements.

2.5.4 SAFS-NEAT

The Sample Aware Feature Selection embedded in NEAT (SAFS-NEAT) algorithm repre-

sents the most closely related work to the proposed PFS-NEAT approach (Loscalzo et al,

2012). SAFS-NEAT attempts to overcome the high sample complexity of the IFSE-NEAT

algorithm by altering how features are evaluated. Instead of relying on policy fitness to in-

dicate the next feature to select, sample observations are collected during NEAT evolution,

and these samples are analyzed to yield the next feature to add to the current subset. SAFS-

NEAT measures the correlation between state changes and the selected action to determine

the set of controllable features (which are assumed to be relevant). This heuristic allows

SAFS-NEAT to focus on searching policies which include features that clearly change as a

result of actions, and works well in situations where actions have an immediate impact on

the fitness of a policy. The SAFS-NEAT algorithm also enjoys the same sample complexity

as NEAT, and only incurs a small time penalty as a result of measuring feature goodness.

The algorithm enables NEAT to scale to problems with large state spaces without incurring

the massive sample observation overhead that IFSE-NEAT does, but its feature evaluation

measure is not general. There are many environments where irrelevant or redundant fea-

tures are impacted by actions, and so would be highly selectable by SAFS-NEAT, and many

other domains where relevant features cannot be controlled by an agent’s actions, but figure

highly into what the action decisions should be. For example, in a driving scenario, safe

9

10 Steven Loscalzo, Robert Wright, and Lei Yu

turning speed significantly depends on both weather and vehicle weight features, but neither

of these features can be controlled by the driver’s actions.

The proposed PFS-NEAT algorithm includes a significantly more general feature rel-

evance measure based on both relevance to reward and state transition information. This

measure, combined with several other improvements, allows it to overcome the above lim-

itations to become an efficient and general feature selection mechanism that compliments

the performance of the NEAT genetic policy search algorithm.

3 Predictive Feature Selection - NEAT

In this section we detail the proposed Predictive Feature Selection embedded in NEAT (PFS-

NEAT) algorithm. By using feature selection, we guide the policy search to consider only

small sets of features, reducing the space of possible policies considered early in the search.

The chief difficulty in performing feature selection during the policy search is finding the

balance between including the appropriate features to be able to capture all information rel-

evant to π∗while still constraining the search space so that an effective policy can be quickly

identified. We divide the discussion of the algorithm along the lines of a typical feature se-

lection algorithm, first detailing the subset search procedure in Section 3.1, followed by the

feature evaluation measure in Section 3.2. We then provide an overview of the entire PFS-

NEAT algorithm in Section 3.3, and conclude this section with a low-level exploration of

parameters and implementation details in Section 3.4.

3.1 Subset Search

Deciding how to alter the feature subset is the primary challenge that must be addressed

when designing a feature subset search strategy for use in a policy search algorithm. In

supervised learning, the search task continues without delay until a termination criterion is

met, since all of the training data is available to the feature selection algorithm. Data changes

dynamically during a genetic policy search procedure because it is generated during the

fitness calculation process when each policy in the population is evaluated. Since we expect

that the policy improves over time, it is reasonable to expect that the data will also show

new trends in feature relevance at different points during the policy search. This assumption

necessitates that the feature subset search be embedded within the policy search. With this

consideration in mind, we must now address the specific feature search strategy, and the

timing of changing the feature space presented to NEAT.

As mentioned in Section 2.3, an exhaustive feature subset search would be too compu-

tationally expensive in any domain with many input features. In theory, any subset search

mechanism can be used. However, we would like to reduce the impact of the feature search

process on the policy search. NEAT follows a complexification paradigm, meaning that its

population of NNs grows in complexity over time. The sequential forward search (SFS) pro-

cedure, widely used in feature selection for supervised learning tasks, intuitively matches

this paradigm (Devijver and Kittler, 1982). Starting from an empty set, SFS iteratively ex-

pands the current subset by selecting the highest scoring feature(s) according to a given

evaluation metric until a desired number of features are selected or some other termina-

tion criterion is met. SFS is particularly suitable for high-dimensional problems where a

large portion of the features are irrelevant or redundant. SFS strategies cannot guarantee

10

Predictive Feature Selection for Genetic Policy Search 11

Champion NN

Evolved
Topology

S1

Sk

Sq

Sq+ j

. . .

O1

O2

Fig. 1: This figure illustrates how newly selected features are incorporated into the current champion NN.

Champion NN represents the best evolved policy function at some generation with features S1 through Sk.

The j+1 newly selected features, Sq through Sq+ j , are introduced to the network through connections (dashed

lines) to every output node.

the optimal solution to the feature subset selection problem (which would require evaluat-

ing 2n subsets for a problem with n features), but this family of search strategies lead to

computationally efficient heuristics on the order of O(n2). One limitation of simple SFS im-

plementations is that they can be mislead when features only show relevance in combination

with others (feature interaction), as in the XOR problem (Guyon and Elisseeff, 2003). To

help alleviate this problem, we use the SFS variant Best-First subset search (Xu et al, 1988).

The Best-First algorithm searches all features currently not in the selected subset, and

evaluates each one in turn with the selected subset using a given evaluation measure. The

feature that causes the greatest subset score improvement is added to the subset, and the

search repeats. The search terminates if no feature improves the subset score, which could

result in zero, one, or several features being added to the currently selected subset. In the

policy search context, after termination of Best-First, each of the newly selected features

is connected to every NN in the population, as depicted in Figure 1. A newly added fea-

ture is directly connected to each of the m output nodes, resulting m new connections per

added feature. The weights on each of the new connections are randomly selected, except

for the champion (best performing) NN. The new connections in the champion network are

assigned zero weight to preserve the previous best policy found in the population. We note

that the search procedure may not find another relevant feature to add at a given step, and in

this case, the NEAT evolutionary process continues with the previously selected subset.

The remaining consideration is the timing of the feature search. In theory, the collection

of a single sample may allow a feature selection algorithm to discover an improved feature

subset. In practice, running the evaluation procedure this frequently is likely to prevent the

NEAT algorithm from having ample time to evolve competent policies that make use of

the altered feature subsets, and would also be computationally expensive. Instead, we allow

NEAT to evolve the currently selected feature subset until fitness stagnation occurs. In other

words, until the fitness of the champion NN does not improve more than some user-defined

threshold amount over some number of generations. This allows NEAT time to discover how

a newly added feature may be integrated into an existing network to lead to better policies.

Details on how to set the stagnation threshold parameters are deferred until Section 3.4.

11

12 Steven Loscalzo, Robert Wright, and Lei Yu

We next address feature evaluation, the other important component of a feature selection

algorithm.

3.2 Evaluation Measure

The success of any feature selection algorithm is dependent on its ability to correctly evalu-

ate feature relevance. First, we must describe what feature relevance means in RL since there

is no user specified class label or response variable, and relevance in supervised learning is

typically described w.r.t. these notions. This discussion largely stems from the definition of

feature relevance in RL provided by Castelletti et al (2011), and implicitly used by Hachiya

and Sugiyama (2010). Feature selection in RL can be described as producing a mapping

function ρ : S 7→ S⋄, where the feature set S of S contains all state variables of some MDP

M and the feature set of S⋄ is S
⋄, with S

⋄ ⊆ S. More specifically, given some s ∈ S,ρ(s)
projects s to s⋄ ∈ S⋄ such that any component Si 6∈ S

⋄ is omitted from s⋄, while any compo-

nent Si ∈ S⋄ is exactly preserved. This function therefore causes an abstract MDP M⋄ to be

created from M with state space S⋄ (containing the Cartesian product of all state variables in

S⋄) with corresponding domain modifications to P and R as necessitated by this change. The

optimal feature selection problem in RL requires searching for a minimal sized feature sub-

set S⋄ such that the mapping function ρ : S 7→ S⋄ belongs to the model-irrelevant abstraction

class defined by Li et al (2006). Given two distinct states s1 and s2 ∈ S, and model-irrelevant

abstraction ρ , ρ(s1)= ρ(s2) implies R(r|s1,a,s
′)=R(r|s2,a,s

′) and P(s′|s1,a)=P(s′|s2,a),
or the agent has the same transition probabilities for all available actions a. This guarantees

that at least for Q-Learning (Watkins and Dayan, 1992), π∗ found in M⋄ will also be π∗ for

the original MDP M (Li et al, 2006). Therefore, a relevant feature in this context is one nec-

essary to compute R or P in M⋄. These guarantees only apply to Q-Learning, but the concept

that relevant features are those which are informative with respect to the unknown R and P

functions is applicable to all RL methods, policy search included.

Following this idea, we emphasize that there are features that are directly relevant to

the unknown reward function R (reward relevant features), and those which are not directly

relevant to the reward, but are relevant to reward relevant features (transition relevant fea-

tures). The selection criterion is biased towards selecting reward relevant features because

the reward is directly related to fitness, our objective measure. This means that an ideal fea-

ture selection algorithm would find the minimal subset of reward relevant features needed

to describe R, but it does not need to identify transition relevant features for every feature’s

transition function. If we assume that the transition function P(s′|s,a) can be partitioned

into n independent functions P(s′1|s,a),P(s
′
2|s,a), · · · ,P(s

′
n|s,a), then it is only necessary to

learn the relevant features for each P(s′k|s,a) where Sk is a reward relevant feature, or a pre-

viously identified transition relevant feature. These descriptions will allow us to use the data

collected during NN fitness evaluation for feature selection.

Each of the NNs in the population is evaluated in the environment in every generation

of NEAT evolution. Fitness of each NN is given by aggregating the rewards received by

following its policy. This behavior is necessary for the evolutionary process to function,

since the composition of the next population is determined in part by the fitness scores of the

networks in the current population. Over the course of each evaluation, a series of samples

of the form 〈s,a,r,s′〉 are observed, where s and s′ are vectors of length n representing the

current and next state feature values, respectively, r is the immediate reward, and a is a

vector of length m containing each of m action decisions that were simultaneously made in

12

Predictive Feature Selection for Genetic Policy Search 13

state s. Note that the environment reports the value of each feature Si whether or not the NN

has Si connected.

Given the data samples collected during fitness evaluation, we can structure them into

several training data sets suitable for feature selection based on the discussion of feature

relevance. First, consider the training data set Dr with features corresponding to all state

and action variables in the environment, and the observed immediate reward of each sample

as the class label. Performing feature selection on Dr will result in an estimate of reward

relevant features given the currently collected samples. Next, let Sk be a reward relevant

feature. Features relevant to the transition function of Sk can be identified by performing

feature selection on a separate training data set Dk. We construct each Dk as we did with

Dr, except we use s′k for each sample instance as the class label instead of r. We repeat this

process for all reward relevant features, and any other features found in each selection step

to arrive at a subset of reward and transition relevant features to use in the policy search.

Given that we can determine class labels for a set of collected samples, we now have

the ability to apply any supervised feature evaluation algorithm on the data to evaluate fea-

tures. In this work, we used the symmetric uncertainty-based evaluation measure from the

Correlation-based Feature Subset Selection algorithm, or CFS (Hall, 1999). Symmetric un-

certainty is defined in terms of the entropy and conditional entropy of random variables,

H(Y) =−∑
y∈Y

p(y) log2(p(y)),and (1)

H(Y |X) =−∑
x∈X

p(x) ∑
y∈Y

p(y|x) log2(p(y|x)), (2)

where X and Y are random variables. Entropy is widely used in the information theoretic

community to measure the uncertainty or unpredictability in a system. Symmetric uncer-

tainty is then given by

SU(X ,Y) = 2 ·
H(Y)−H(Y |X)

H(Y)+H(X)
, (3)

which is the information gain measure (H(Y)−H(Y |X)), or the amount of information

gained about Y after observing X , normalized by the entropy of X and Y . Information gain

is biased towards features that have more values. Symmetric uncertainty corrects for this

bias and so is more broadly applicable. Using the symmetric uncertainty measure, we can

describe the scoring function used by CFS:

score(S, ℓ) =
∑Si∈S SU(Si, ℓ)

√

∑Si,S j∈S,i6= j SU(Si,S j)
, (4)

which assigns a numeric score to subset S with respect to class label ℓ based on the ratio

of symmetric uncertainty between features in the subset and the class label, and all pairs

of features in the subset themselves. This measure is capable of discriminating between

relevant and irrelevant feature subsets, while also keeping redundant features out of the

selected subset.

The overall feature selection methodology is given by the select-features function (Al-

gorithm 1). This function takes as input the current set of selected features (Scurr), which

may be empty, and a set of samples D collected during the policy evaluation stage of NEAT.

The specific sample collection strategy that we employ is discussed in Section 3.3. Line 3

of the algorithm creates a labelled data set Dr from D as described above. The CFS scoring

13

14 Steven Loscalzo, Robert Wright, and Lei Yu

Algorithm 1 select features(Scurr,D)

1: //Scurr : set of currently selected features

2: //D: data set of collected samples from environment

3: Dr ← filter(D,{s,a,r})
4: Sbest ← CFS(Scurr,Dr)
5: if Sbest = Scurr then

6: //Count # selections of each transition relevant feature

7: c[|S|]← 0

8: for Sk ∈ Scurr do

9: Dk ← filter(D,{s,a,s′k})
10: Sk ← CFS(Scurr,Dk)
11: for Si ∈ Sk do

12: c[i]← c[i]+1

13: end for

14: end for

15: //Select the feature with the max count, breaking ties randomly

16: Sbest ←max count(c)
17: end if

18: return Sbest

algorithm is then run on Dr starting with the current feature subset and using the Best-First

subset search heuristic to increase the selected subset size (Xu et al, 1988).

If the search does not identify any more reward relevant features to be added to the

current subset, the select-features algorithm begins its search over the transition functions

of each of the variables in the currently selected subset. For each previously selected feature

Sk, we substitute each sample’s next state s′k as the class label and re-run the Best-First

search with CFS scoring to discover the transition relevant features for Sk , denoted Sk. We

keep track of the frequency that each feature is a part of selected subset Sk,∀Sk ∈ Scurr, and

choose the maximum occurring feature to include in the returned subset. Ties are broken

randomly between features that share the same maximum occurring frequency to ensure

that at most one feature is selected from the transition relevant subset. This procedure differs

from the reward relevant section, where a subset of size greater than one may be returned, to

avoid adding many features at once to the population. Many different features may possess

partial relevance to state transitions, and we have no a priori preference to select features

corresponding to one feature’s transition function over another’s. We take each selection

result as a vote and use the maximum consensus pick to limit the number of transition-

relevant features that may be added in one call to the select-features algorithm. Additionally,

a threshold value may be used to require higher scores before selecting features, which may

be helpful in situations where noisy data causes inconsistent relevance measure results. In

summary, the select-features algorithm will return a feature subset containing either:

1. previously unselected features that are found to be reward relevant, or

2. the previously unselected feature that was found to be most frequently relevant to the

current set of transition functions, or

3. no features (an empty subset), indicating that CFS did not identify any remaining fea-

tures as being relevant to D.

The returned subset Sbest will be combined with Scurr to create Scurr for future generations.

The selected feature subset used by the NEAT algorithm will therefore be monotonically

non-decreasing in size after successive calls to the select-features algorithm.

14

Predictive Feature Selection for Genetic Policy Search 15

Policy Search

Feature Selection

P
F

S
-N

E
A

T

D

p
o
p
u
la

ti
o
n

gathered

samples

〈s,a,r,s′〉

Generation 0

Environment

s a r,s′

Alg. 1

selected
feature

evolve
until

stagnation

Generation 1

Environment

s a r,s′

D

〈s,a,r,s′〉
selected
feature

Generation ℓ

Environment

s a r,s′

Generation ℓ+1

Environment

s a r,s′

Alg. 1

Fig. 2: Illustration of the Predictive Feature Selection embedded in NEAT (PFS-NEAT) algorithm. Samples

collected from Generation 0 are used by Algorithm 1 to select the initial feature to be included. Sample

collection and feature selection are then periodically carried out once the fitness of the population with the

current set of selected features stagnates. This process repeats until adding an additional feature does not

improve the fitness of the population.

3.3 PFS-NEAT Overview

Figure 2 provides a high-level overview of the entire PFS-NEAT process, focusing on the

periodic calls to the feature selection component (discussed in the previous sections) from

the policy search component. In this section, we will discuss this process in more detail,

referring to Algorithm 2, a pseudo-code description of the PFS-NEAT process, throughout.

PFS-NEAT begins by initializing a NEAT population with fully connected networks

(all features selected). NEAT-evolve is then called on this population, generating a set of

samples Di during the policy evaluation step of each NN. This data set is incorporated into

the overall data store D, and the fitness of the best network in population Π is saved for use in

determining stagnation. Once the stagnation criteria is met, then the feature selection block

is entered. A subset of features Sbest is returned from Algorithm 1 and this subset is added

to the currently selected set of features. Any newly selected features are then combined with

the best NN in Π (line 20) as in Figure 1 and the resulting policy π is used to re-initialize

Π to connect just the features in Scurr to the networks. The policy search loop repeats until

some termination criterion is met, such as a fixed number of iterations, or the fitness of the

best NN exceeds some threshold.

Besides the previously discussed feature selection component, there are two technical

considerations in a practical implementation of this algorithm: stagnation and sample selec-

tion. Stagnation effectively determines the maximum rate at which the feature subset, and

hence the policy search space, can grow. In this implementation, stagnation is controlled by

two user-defined parameters: a window size that covers some positive number of genera-

tions w, and the amount of change in the champion policy’s fitness ε . The window size, w,

forces the feature subset search to wait at least w steps in between calls to select-features.

The population is only considered stagnant if the slope of previous w champion fitness val-

ues contained in the champions stack is less than ε . Setting w and ε is straight-forward to do

in practice, and is discussed in Section 3.4.

15

16 Steven Loscalzo, Robert Wright, and Lei Yu

Algorithm 2 PFS-NEAT(w, ε)

1: //w: stagnation window size

2: //ε : stagnation value threshold

3: D←{}
4: Scurr ←{}
5: do-init← true

6: champions← empty-stack

7: //initialize the population

8: Π ← init-population(random fully-connected-network)

9: repeat

10: Di ← NEAT-evolve(Π)

11: D← incorporate-data(Di)

12: champions.push(bestNN(Π).fitness)

13: if stagnant(champions, w, ε) or do-init = true then

14: champions.clear()

15: if do-init = true then

16: do-init← false

17: end if

18: Sbest ← select-features(Scurr ,D) (Alg. 1)

19: Scurr ← Scurr ∪ Sbest

20: π ← combine(Sbest , bestNN(Π))

21: Π ← init-population(π)

22: end if

23: until /* termination criterion met */

24: return bestNN(Π)

Sample selection is conducted in Algorithm 2 by the incorporate-data function call (line

11), and requires further examination. Feature selection algorithms assume that the training

data they are given are independent and identically distributed (IID), allowing the algorithms

to select a compact subset of features that captures information from the data throughout the

entire sample space. The IID assumptions do not hold in the data collected during policy

evaluation, Di, since each data sample 〈s,a,s′,r〉 leads to the next sample in the sequence

and so are not independent, and they may not cover the entire sample space. This is espe-

cially valid in the early stages of policy search when policies may cause the agent to only

visit states near the start state. Overcoming these challenges in general is out of the scope of

this work, but we do propose a heuristic sample collection strategy, which we demonstrate

in Section 4 works well in practice. During the evaluation of Π , all samples from the top five

most fit networks are stored to improve diversity in stored samples. To assist in the identifi-

cation of reward relevant features, we partition the overall sample store D into terminal and

non-terminal samples, because the reward values for terminal states are often different, but

less-frequently observed, than non-terminal states. Next, incorporate-data adds the samples

from Di to their appropriate bin in D. When D is used in select features (line 18), random

sampling with replacement is used to balance the smaller partition (typically terminal states)

with the larger partition so that the relevance measure is not biased towards the non-terminal

states. If this balancing does not take place, the relative rarity of the different reward values

seen from transitioning to terminal states in many domains causes features relevant to the

reward variations to be overlooked, which hinders the policy search.

3.4 Parameter Selection

PFS-NEAT relies on the notion of policy fitness stagnation to determine when a population

using a given set of features has likely reached its maximum potential. The stagnation crite-

rion requires two parameters ε and w for this purpose. The complexity of the policy space

should influence the selection of w and ε . For example, in a simple domain the search does

16

Predictive Feature Selection for Genetic Policy Search 17

not require many generations to evolve a competent policy with a given feature subset and

can therefore quickly progress from one subset to the next. In a domain obeying more com-

plex transition and reward functions, more NN structure may be needed to be evolved before

gains in policy fitness are observed for a given feature subset, and so the stagnation criterion

should be set to delay changes to the selected subset. Determining the length of time to allow

a population to evolve is a manifestation of the omnipresent exploration versus exploitation

problem in RL (March, 1991). Allowing NEAT to explore more configurations using the

current set of input features may allow it to discover a better policy, though there will be

only marginal return on this investment of time after a certain point. At this point, exploiting

the best known policy and adding a new feature to it may be a better direction for the policy

search to follow.

Values of ε can be constrained in the range [0, 1] and then can be multiplied by the max-

imum fitness possible in an environment to arrive at a stagnation fitness threshold. If ε is

zero, then stagnation only occurs when the difference in fitness over a span of w generations

is zero. If set to one, then any fitness change, no matter how large, will be considered stag-

nant. Setting ε to something small is a reasonable compromise between the two extremes,

and the algorithm tends to be insensitive to the exact setting. The window size w affects the

quality of the stagnation estimate; the larger the w, the more accurate the stagnation check

becomes. In practice, most window sizes produce sufficiently accurate estimates, so this pa-

rameter is also easy to set. The two parameters do indirectly control how frequently features

get added to the subset, since a new feature can only be included after the previous popu-

lation reaches stagnation. If a very large window is set, then many generations must elapse

before a stagnation check can succeed, delaying feature selection. To allow PFS-NEAT to

include features at a reasonable rate, small w and nonzero ε are preferred.

The stagnation threshold has additional implications on the NEAT policy search. If w

and ε are set such that many generations must elapse before the population is considered

stagnant, the champion NN may evolve additional structure that does not change the fitness,

but is included in subsequent generations. When the subset does change, the NEAT search

will be needlessly complicated by this additional structure, slowing future progress. Over-

complication can also happen prior to stagnation; NEAT may improve the fitness of its pop-

ulation using towards a local minimum in the fitness landscape for the current feature subset.

This local minimum may be “deceptive,” meaning that it does not clearly lead to the global

optimal policy (Goldberg and Richardson, 1987), and the feature subset should have been

changed earlier to escape the local optimum. This is a challenging problem that is beyond

the scope of this work, and has been addressed in recent studies that encourage diversity in

the search space to avoid becoming trapped in these local minima (Mouret and Doncieux,

2012). Coupling the feature selection process to other mechanisms that address deceptive

fitness landscapes such as multi-objectivism (Knowles et al, 2001), coevolution (Cliff and

Miller, 1995), or evolutionary searches that optimize on novelty instead of fitness (Lehman

and Stanley, 2011) may alleviate this issue and are an open area of future study.

4 Empirical Study

In this section we provide an empirical study that measures and demonstrates PFS-NEAT’s

ability to learn in over-specified problem domains. This study is conducted in two bench-

mark environments described by both designed relevant and additional features. We show

that PFS-NEAT can learn good policies by selecting small subsets of relevant features in

both of these environments. Section 4.1 describes the problem setup of both the robot auto

17

18 Steven Loscalzo, Robert Wright, and Lei Yu

Name Informative N(0.5,0.25) Lagged Broadcast Total

D(10,0) 10 0 0 0 10

D(10,30) 10 10 10 10 40

D(10,60) 10 10 10 40 70

D(10,90) 10 10 10 70 100

Table 1: RARS scenarios under study, decomposed into number of known informative sensors, and the three

categories of known irrelevant or redundant features.

racing simulator and the double inverted pendulum balance environments. It also includes

parameter settings for all algorithms included in the study. Section 4.2 presents the results

of our study and is broken into three parts. The first two correspond to the two problem

environments mentioned above, and the third provides a summary of our main results.

4.1 Experimental Setup

4.1.1 Robot Auto Racing Simulator

. . .

. . .

Fig. 3: The range finder sensors measuring the car’s

position relative to the nearest track walls.
Fig. 4: Overhead view of the track used in this study,

included in the RARS distribution.

Our first experimental domain is a Java port of the Robot Auto Racing Simulator1

(RARS) racing simulation environment. The goal of this problem is to drive a car around a

track as quickly as possible, while keeping the car on the track. Each state of the environ-

ment is defined by a set of 9 position sensors and the car’s speed. The sensors evenly span

the 180◦ area in front of the car as depicted in Figure 3, and measure the distance from the

car to the nearest track wall along that direction. The set of 10 position sensors and velocity

are considered relevant, or informative, features. In each state, the learner must use these

features to determine correct values for two continuous actions, the next desired vehicle

speed and direction.

All RARS experiments were conducted on the track shown in Figure 4, which contains

a representative sampling of driving situations including straightaways and turns in either

direction that are both sharp and gentle. We defined the reward function of the RARS envi-

ronment to be the distance traveled in a time step, or -5 if the car leaves the track area. We

limit each policy evaluation to 3,000 time steps in the environment which is sufficient for a

1Project located at: http://rars.sourceforge.net

18

Predictive Feature Selection for Genetic Policy Search 19

fit policy to complete approximately 1.5 laps of the track. The fitness function therefore re-

ports the total distance traveled by the car in feet, -5 if the car leaves the track before the end

of the evaluation. The penalty of -5 is minor compared to fitness scores of high-performance

policies (∼30,000), but it is instructive early on in learning when the car does not travel far

before crashing.

Beyond the above set of sensors that are designed to be relevant to the driving task,

we also introduce several types of additional features to better capture real world sensing

challenges. Gaussian random variables with mean 0.5 and standard deviation 0.25 are used

to simulate irrelevant sensors readings (e.g., engine coolant level, radio frequency, air tem-

perature, etc.). Lagged sensor readings are also provided and report the informative sensor

readings from five time steps earlier, notionally caused by sensor processing delays or some

minor system fault. During the first five steps of the simulation, these sensors report a zero

value. The lagged sensors may provide some relevance to the policy search algorithm. For

instance, the policy may be able to improve itself by being able to measure velocity changes

over this period. Despite this fact, we consider them to be part of the additional feature set

in our evaluation since the driving task can be learned from the original set of designed

relevant features. Finally, readings from other vehicles in the environment are provided to

the agent to simulate broadcast interference in a manner similar to the experimental setup

of Nouri and Littman (2010). Each car reports the velocity and nine distance readings in

the same fashion as the controlled car. These other cars all follow the top performing policy

found by NEAT in the environment when only the relevant set of sensors was used. This

policy’s performance is commensurate with the best seen manually developed policies for

this environment. All cars (real and virtual) begin equally spaced around the track to provide

diversity of sensor inputs. For simplicity, the cars do not physically interfere with each other

on the track. All sensor readings, or feature values, are normalized (or clipped for Gaussians)

to report values in [0, 1].

The Gaussian random, lagged, and other vehicle sensors are collectively referred to as

the additional sensors in our study and note that some of the sensors may improve learning

performance on their own or when considered in combination with the designed informative

sensors. We label the domains under study by D(# in f ormative,# additional) . The four domain

variants we consider in the RARS environment are listed in Table 1, where we achieve scal-

ing by adding more cars on the track and reporting their broadcast sensors as described

above. The decision to scale the number of broadcast sensors was made because it repre-

sents the most realistic possibility of the sensors we used, and provides a challenge to our

algorithm. Increasing the number of lagged sensors (by altering the delay time) increases

redundancy among features in the feature set, allowing the PFS-NEAT algorithm to easily

detect and avoid adding many of them to the set. Loscalzo et al (2012) showed that scal-

ing the number of Gaussian random sensors provided very little impact on SAFS-NEAT,

and our preliminary study revealed that more Gaussians do not present a challenge to PFS-

NEAT either. As seen in the experimental section of that work, random sensors do have a

strong negative impact on FS-NEAT. Including an irrelevant feature may not harm the pol-

icy in one generation, but subsequent improvements will need to work around unpredictable

values from that sensor, causing the algorithm to become stuck in local optima. When there

are many of them present, this situation becomes more likely, reducing the probability of

a successful FS-NEAT performance. Broadcast sensors sometimes report values that look

quite relevant to the controlled car’s performance, and are therefore more challenging for

our method to classify as informative or not. On the other hand, the other algorithms in our

study are better suited to evolve around these features than Gaussian random ones because

19

20 Steven Loscalzo, Robert Wright, and Lei Yu

X

X
′

θ1θ2

θ
′
1

θ
′
2

Fig. 5: Double inverted pendu-

lum balancing problem with all

six relevant features labeled.

Table 2: Double pole balance scenarios under study, decomposed into num-

ber of known informative sensors, and the three categories of known irrele-

vant or redundant features.

Name Informative N Lagged Broadcast Total

D(6,0) 6 0 0 0 6

D(6,18) 6 6 6 6 24

D(6,36) 6 6 6 24 42

D(6,54) 6 6 6 42 60

evolved NNs can more easily compensate for the regular patterns of the broadcast sensors

than the Gaussian random values.

4.1.2 Double Inverted Pendulum Balancing

The Double inverted Pendulum Balancing problem (DPB) is a standard RL benchmark prob-

lem (Gomez and Miikkulainen, 1999). The agent is required to balance two poles with dif-

ferent lengths and masses that are attached at one end to a movable cart, as illustrated in

Figure 5. Control is achieved by selecting one of three discrete actions in each time step:

move left, move right, or do not move. In addition to balancing the two poles, the agent is

required to keep the cart within a small length of track. The problem is considered solved

if the agent can learn a policy which keeps the poles upright for 100,000 time steps while

keeping the cart within the restricted track. The reward function returns 1 while the poles are

balanced, and 0 if either pole falls over or the cart strays beyond the boundaries of the track

segment. Once either pole falls, the policy evaluation is terminated. The fitness function is

simply the number of time steps that the poles remained balanced and the cart did not stray

beyond the designated area, and so is limited to 100,000 in our experiments.

Each environmental state is described by six continuous inputs: position of the cart (X),

velocity of the cart (X ′), the angle between each pole and the cart (θ1 and θ2), and the angu-

lar velocities of the poles (θ ′1 and θ ′2). We again simulate a more sensor rich environment by

adding Gaussian random sensors, lagged sensors, and broadcast values from other cart-pole

systems to the state space, as done in the RARS environment in Section 4.1.1. Broadcast

sensors are reported by other (virtual) cart-pole systems in the environment, each contribut-

ing six feature readings from the sensors described above. These virtual cart-pole systems

follow a policy learned by NEAT which was able to balance the poles for at least 100,000

time steps. Each virtual cart-pole system begins from a slightly different starting location,

and the poles do not fall during execution. We experimented with increasing numbers of

additional features as shown in Table 2, scaling the number of virtual cart-pole systems to

achieve greater feature sizes. The rationale behind scaling these sensors as opposed to the

random or lagged sensors is the same as for the RARS environment.

4.1.3 Algorithm Parameter Settings

This study compares results for five algorithms: NEAT, FS-NEAT, FD-NEAT, SAFS-NEAT,

and PFS-NEAT. NEAT serves as the baseline learner which does not perform any feature

selection. FS-NEAT, and FD-NEAT are existing feature selection algorithms that use an

evolutionary search heuristic to select features, as described in Sections 2.5.1& 2.5.2 respec-

tively. SAFS-NEAT controls the selected subset externally from the evolutionary process,

20

Predictive Feature Selection for Genetic Policy Search 21

as described in Section 2.5.4. PFS-NEAT is our instantiation of the predictive feature se-

lection framework, and is described in Section 3.3. Though IFSE-NEAT was discussed in

Section 2.5.3 and can be expected to perform well in these domains based on past empirical

evidence Wright et al (2011), it is not included in this study because it runs O(n2) additional

runs of the NEAT algorithm during the course of execution to determine feature relevance.

These extra evolutionary steps put the algorithm on unequal footing with the others, and so

we do not include it in this study.

All five algorithms are based on the NEAT genetic policy search algorithm, and share

a number of parameter settings that control the evolutionary search. The population size p

must be large enough to promote genetic variation amongst different candidate NNs, though

keeping it small will reduce the time required to evaluate the population in each NEAT-

EVOLVE function call. Setting it to 100 provided a fair balance between allowing NEAT

to explore new NNs, while perpetuating previously evolved NNs. Experimental results re-

vealed only minor differences in performance with either smaller or larger population sizes.

The top 20% of the population was propagated unchanged into the next population. NEAT

population members are eligible to reproduce if their compatibility scores are greater than

0.5. Weight parameters control how excess, disjoint, and matching genes contribute to the

compatibility score in NEAT (Stanley and Miikkulainen, 2002). We set the excess coeffi-

cient to 1.0, disjoint to 1.0, and matching to 0.04 in all experiments, and found that the

algorithms are largely insensitive to variations in these values for the experimental domains

considered. Activation functions on the input neurons are linear, while all other activation

functions are sigmoid. Recurrent NNs are disallowed in all experiments because effective

policies were found without the need for recurrent networks, and allowing them would slow

the policy evaluation process. Since evolution is a stochastic process, all experiments were

run 100 times, each with a different random seed, and the results shown in the figures of

Section 4.2 are the averages across these 100 runs.

There are additional parameters which are environment specific. For RARS, it was found

that linear networks could produce a successful policy, so the add neuron mutation was

turned off. To randomly add features into the networks, FS-NEAT used an add connection

mutation rate of 0.01, a value found to work best across all RARS scenarios via a parameter

sweep in {0.01,0.02,0.05,0.10,0.20}. This value means that approximately one percent of

all possible connections which can be added for each network will be added during the

mutation step. Larger add connection rates could lead to reaching maximum performance

more rapidly, but this maximum was lower than the one attained using 0.01. Evolution was

permitted for 300 generations to give ample time for convergence. FD-NEAT requires the

use of a remove connection weight which was set to 0.01 in RARS, the best performing value

found in {0.001, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90}.

SAFS-NEAT and PFS-NEAT used a window size of w= 10 generations, and set ε = 0.001 to

control stagnation, where the possible fitness values of an NN in the RARS test environment

are in the range of [0, 30,600]. For DPB, all five algorithms set the add connection mutation

rate to 0.02 and add neuron mutation to 0.01. Again, this value was found for FS-NEAT via

parameter sweep in the same range as for RARS. FD-NEAT set its remove connection rate to

0.70, and was chosen via parameter sweep from the same set of values as for RARS. Linear

networks can also be successful in the pendulum balancing environment, but a non-zero add

neuron mutation rate was found to be useful to all algorithms. A general policy was learned

by using a problem set of 100 instantiations of the cart-pole system. Each time, the cart was

positioned in the center of the track, while the poles were given different initial angles and

velocities. The problem instances are all solvable and identical across runs. SAFS-NEAT and

PFS-NEAT again used a window size of w= 10 generations, and set ε = 0.001. The possible

21

22 Steven Loscalzo, Robert Wright, and Lei Yu

fitness values of an NN are in the range of [0, 100,000] for this domain. SAFS-NEAT and

PFS-NEAT employed an expansion factor of 1.2 to increase the window size after each

selection round (i.e., the first stagnation check occurs after 10 generations, the second must

wait for at least 12 generations, etc.). This encourages adequate sample collection over the

course of evolution.

All algorithms in this study are based on the ANJI2 implementation of NEAT, and

Weka’s implementation of CFS3. We have provided implementations and documentation

for all algorithms in this study at https://github.com/sloscal1/PFS-NEAT. It

should be noted that the mutation operator rates have different meanings in the ANJI code

than in the standard NEAT description. Mutation rates were defined as the fraction of the

population that would experience the mutation in the original NEAT description, but ANJI

interprets the rates as the probability that any single possible mutation in a network will hap-

pen. This produces another variation from canonical NEAT to ANJI, multiple topological

mutations are allowed on an NN in one evolutionary generation in ANJI, but only a single

topological mutation was permitted in the original NEAT algorithm.

4.2 Results and Discussion

4.2.1 Robot Auto Racing Simulator

The left column of Figure 6 contains performance results of the three algorithms in the

RARS environments as the number of additional sensors increase from 0 in panel (a) to 90 in

panel (d). Scenarios with additional sensors ((b) – (d)) also show the performance of NEAT

on D(10,0) for reference. To better gauge the significance of theses results, the plots include

two statistical significance tests. The “Statistical Significance A” curve (two tick marks)

is visible at the top of each fitness plot for those generations when PFS-NEAT is either

statistically significantly better or not significantly distinguishable from NEAT on D(10,0)

with p < 0.01. The “Statistical Significance B” curve (one tick mark) is visible near the

top of each fitness plot for those generations when PFS-NEAT is statistically significantly

better than the other three feature selection algorithms in the given scenario with p < 0.01.

All significance tests (in both experimental domains) were done using Welch’s t-test with

unpaired samples and unequal sample variance.

The connection between fitness value and the policy quality is abstract in these results,

but subjective observations can be made regarding the effectiveness of policies with different

fitness values. Policies with fitness at around 1,000 or less typically correspond to cars that

drive directly into walls with little or no steering capability. Once policies achieve scores

around 20,000, they can usually drive a complete circuit on this track, though do so at a near

constant velocity. Fitness values around 30,000 indicate that a policy has learned to quickly

navigate turns of varying sharpness and accelerate through straightaways. The maximum

fitness values obtained by the learning algorithms are similar to what manually programmed

drivers can achieve on these tracks, and these drivers consistently appear to make smart

driving choices.

2http://anji.sourceforge.net
3http://www.cs.waikato.ac.nz/ml/weka

22

Predictive Feature Selection for Genetic Policy Search 23

NEATD(10,0)

NEAT

FS-NEAT

FD-NEAT

SAFS-NEAT

PFS-NEAT

Stat. Sig. A (see text)

Stat. Sig. B (see text)

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0

1

2

3

4

5

6

7

8

9

10

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(a) RARS Fitness D(10,0) (a′) RARS Features D(10,0)

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0

5

10

15

20

25

30

35

40

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(b) RARS Fitness D(10,30) (b′) RARS Features D(10,30)

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0

5

10

20

30

40

50

60

70

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(c) RARS Fitness D(10,60) (c′) RARS Features D(10,60)

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0
5

10

20

30

40

50

60

70

80

90

100

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(d) RARS Fitness D(10,90) (d′) RARS Features D(10,90)

Fig. 6: Plots (a) – (d) (left column) denote the average fitness of the algorithms in comparison during the

first 300 generations of evolution for each of the RARS scenarios described in Table 1. Plots (a′) – (d′) (right

column) show the corresponding selected feature subset sizes of the four feature selection algorithms in

comparison. Curves in all plots follow the key at the top of the page. Plots (b) – (d) contain a dotted reference

curve replicating the performance of NEAT on D(10,0) (the scenario using only informative features). The

Stat. Sig. A and B curves are shown when their conditions are met with p < 0.01 in a given generation (see

text for details). Error bars denote the standard deviation of the 100 runs at each point.

23

24 Steven Loscalzo, Robert Wright, and Lei Yu

The negative impact of the additional sensors on the NEAT policy search is clearly

illustrated by the increasingly large gap in performance between the reference curve and

NEAT’s performance curve as the scenarios introduce more additional sensors. In contrast,

PFS-NEAT is able to evolve policies that are primarily composed of informative sensors, al-

lowing the policy search to consistently locate policies that are statistically indistinguishable

from the reference curve by generation 70. All feature selection algorithms perform well in

the case when no additional sensors are considered (Figure 6(a)), but when additional sen-

sors are included, the benefits of FS-NEAT, FD-NEAT, and SAFS-NEAT are diminished.

While these other feature selection algorithms outperform NEAT at generation 300, PFS-

NEAT statistically significantly outperforms all competitors after generation 40 in scenarios

(b) – (d). FS-NEAT reaches an intermediate performance between the other two algorithms,

scaling better than NEAT but worse than PFS-NEAT. The standard deviation bars on the

plots also deserve some explanation. For FS-NEAT and SAFS-NEAT these bars remain rel-

atively large throughout learning. Both algorithms heavily depend on stochastic influences

to select features: FS-NEAT directly via evolutionary performance, while SAFS-NEAT re-

quires varied samples observed during evolution to guide the subset search. In some runs,

good policies are evolved early (and for SAFS-NEAT diverse and informative samples are

collected) and lead to high performance policies. In other runs, additional features get se-

lected early by chance, and prevent the policy search from evolving policies with even the

fitness of the baseline NEAT algorithm. These divergent outcomes lead to large standard

deviations. FD-NEAT is very similar to NEAT and makes smaller changes to the subsets

in this environment than the other selection algorithms. This allows the performance to be

more consistent than FS-NEAT or SAFS-NEAT, but typically only slightly better than the

NEAT algorithm. PFS-NEAT starts with large deviations, as different relevant features are

selected early in learning, but these deviations shrink over time. This is due to the different

runs converging on a similarly good set of relevant features, which in turn produces consis-

tently fit networks. These results demonstrate the need for feature selection in over-specified

RL domains.

Let us next consider the performance of baseline NEAT algorithm as the number of

sensors in the environment grows. It performs significantly worse as more additional fea-

tures are added to the problem because the evolutionary search has a lower probability of

making several good mutations simultaneously to improve the NNs. Only one or even a few

prosperous mutations may be insufficient to drive the fitness of an NN high enough to guar-

antee its inclusion in the subsequent generation. Failure to survive to the next generation

will cause these good mutations to die out from the population, preventing NEAT from pro-

gressing towards an optimal policy. FS-NEAT and FD-NEAT are able to perform better than

NEAT when considering additional sensors by virtue of incorporating fewer of them into

their networks, requiring fewer simultaneous successful mutations to cause fitness improve-

ment. They also clearly shows a sensitivity to the number of additional features included

in the problem, and attain increasingly lower fitness values as more of them are present in

the problem. For FS-NEAT, this is due to the high probability of a mutation connecting an

additional feature into the network, forcing later generations to evolve around these errant

features. FD-NEAT must remove increasing numbers of features to increase chances of suc-

cessful policy searches, and it runs the risk of removing informative features in the process.

SAFS-NEAT causes a small number of sensors to be selected in this environment, but it does

not always succeed at selecting informative sensors which we discuss below. PFS-NEAT’s

feature selection strategy is not dependent on the number of additional features since they

are given low evaluation scores. Therefore, they are not selected into the feature subset,

regardless of their prevalence in the environment.

24

Predictive Feature Selection for Genetic Policy Search 25

The right column of Figure 6 shows the progression of the selected feature subsets dur-

ing learning in each of the four scenarios (a′) – (d′). These plots serve to show the size

of the selected feature subsets and when the feature subset is changed during the evolu-

tionary process. Note that the scales of the y-axes differ according to the total feature set

size in each scenario. In these plots, the “Statistical Significance A” curve is visible in

those generations when the fraction of informative sensors in PFS-NEAT’s selected subset

is significantly greater than the fraction of informative sensors in each of the other three

algorithm’s subsets (at p < 0.01). “Statistical Significance B” is visible when the fraction

of informative and lagged sensors in PFS-NEAT’s selected subset is significantly greater

than any of the other algorithm’s subsets (at p < 0.01). These measures convey the quality

of the selected subsets, accounting for the possibility that the lagged sensors may in fact be

useful to the policy search process. These curves do not appear in (a′) since all features are

informative in that scenario. In plots (b′) – (d′) we see that PFS-NEAT consistently selects

subsets containing more informative sensors than any other algorithm for much of the evo-

lutionary process, though other algorithms include enough lagged sensors in their subsets

that their compositions in terms of informative and lagged sensors are not statistically sig-

nificantly worse than PFS-NEAT. The quality and size of the selected subsets underpin why

PFS-NEAT is able to outperform the other algorithms in the scenarios involving many addi-

tional features. The subset curves in (b′) – (d′) also explain why PFS-NEAT lags behind the

reference curve early in the search in fitness plots (b) – (d). We see that PFS-NEAT delays

its initial subset selection until a threshold amount of samples has been collected to lower

the chances of finding a spurious pattern during the relevance measurement step. The algo-

rithm then selects features as quickly as permitted by the stagnation parameters until nearly

all features are selected. In scenarios D(10,0) and D(10,60) we see that the window param-

eter dominates the selection process of both PFS-NEAT and SAFS-NEAT. If the window

was larger, the subsets would grow more slowly along with overall fitness. If the window

is shrunk too much below its current value of 10, the algorithm increases its chances of se-

lecting irrelevant features due to poor sample diversity. SAFS-NEAT is forced by design to

select one feature at a time, and so more slowly reaches a quality subset, as can be seen most

clearly in (a′). FD-NEAT removes features from its selected subset over time, allowing the

policy search to have more success than the baseline NEAT algorithm, and may continue

to improve if more generations are permitted. FS-NEAT slowly builds the selected subset

throughout the policy search, resulting in a larger subset than PFS-NEAT and SAFS-NEAT

in settings D(10,60) and D(10,90).

Though PFS-NEAT and FS-NEAT arrive at a similarly sized subset in the D(10,30) sce-

nario, the composition of the subset leads to the difference in fitness observed in Figure 6(b).

We examine these differences in more detail in Figure 7. We first note that FD-NEAT is on

a larger y-axis scale than the other algorithms since it selects a larger subset size in this sce-

nario, and that baseline NEAT is not shown since it does not change the subset size during

learning. We next point out that PFS-NEAT and FS-NEAT select the highest and second

highest numbers of informative sensors in the environment, respectively, and have the best

performing results in Figure 6(b). PFS-NEAT also keeps out Gaussian and broadcast sen-

sors, giving a performance edge to that algorithm. We see that SAFS-NEAT has a tendency

to select lagged sensors at about the same rate as informative ones in this scenario, causing

the policy search to have difficulty evolving a reasonably fit network in this environment.

FD-NEAT removes all types of sensors at roughly equivalent rates. The composition of FD-

NEAT’s selected subsets in D(10,60) and D(10,90) (not shown) reveal a slight preference for

retaining more informative features than the other types. This outcome supports the above

hypothesis that with more generations, FD-NEAT may also arrive at a fit policy.

25

26 Steven Loscalzo, Robert Wright, and Lei Yu

0

5

10

15

20

25

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

FS-NEAT All

Informative

Gaussian

Lagged

Broadcast

0

5

10

20

30

40

50

60

70

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

FD-NEAT All

Informative

Gaussian

Lagged

Broadcast

FS-NEAT RARS D(10,30) FD-NEAT RARS D(10,30)

0

5

10

15

20

25

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

SAFS-NEAT All

Informative

Gaussian

Lagged

Broadcast

0

5

10

15

20

25

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

PFS-NEAT All

Informative

Gaussian

Lagged

Broadcast

SAFS-NEAT RARS D(10,30) PFS-NEAT RARS D(10,30)

Fig. 7: Selected feature subset compositions for each of the four feature selection algorithms in the RARS

D(10,30) scenario. The “All” lines denote the average subset size at each generation, “Informative” denotes

the number of relevant features selected, while the other three lines give the counts of each type of additional

feature selected. Error bars denote standard deviation.

4.2.2 Double Inverted Pendulum Balancing

The left column of Figure 8 shows the average fitness performance of the five algorithms

as the number of additional features increases in the DPB environment. Fitness indicates

the number of time steps that both pendulums remained balanced on the cart, with 100,000

being the maximum possible duration in our setup. Similar to the results from the RARS

experiments, the performance of NEAT on the scenario with no additional features, D(6,0),

is shown as a reference. The statistical significance bars at the top of the fitness plots have

the same meaning as described above for the RARS environment, but use (p < 0.005) in

this environment. We see in Figure 8(b) – (d) that additional features have an even greater

negative impact on the NEAT algorithm than they did in the RARS environment, and further

motivate the need for effective feature selection algorithms to aid policy search. In this envi-

ronment PFS-NEAT does not dominate all of the competing feature selection algorithms. In

fact, FD-NEAT almost always (the slight exception being a few early generations) produces

policies that are at least as fit as PFS-NEAT in all scenarios. PFS-NEAT is able to arrive

at policies that are not statistically significantly worse than the reference curve by the end

of 300 generations, so it is still an effective feature selection algorithm in this environment.

Both FS-NEAT and SAFS-NEAT are better able to cope with the additional sensors in this

setting, but their performance still diminishes when 36 or 54 such features are in the envi-

ronment, as shown in panels (c) and (d). Both FD-NEAT and PFS-NEAT show a slightly

negative trend as the number of features increases, but this trend is not as strong as that of

26

Predictive Feature Selection for Genetic Policy Search 27

the other algorithms in comparison. The error bars in these plots show that all of the fea-

ture selection algorithms have large variances that shrink during the course of evolution, but

not to the extent seen in the RARS domain. This is once again due to the dual modality of

the results as described in the RARS results. There are some runs where feature selection

fails to identify a good feature subset or the policy search does not encounter a successful

policy in the 300 generations of the experiments. These bad outcomes happen more or less

frequently depending on the algorithm, with PFS-NEAT and FD-NEAT suffering fewer of

them as compared to FS-NEAT and SAFS-NEAT. NEAT has small error bars since all runs

either performed uniformly well as in Figure 8(a) or uniformly poorly as in (b) – (d). It is

worth pointing out the excellent performance of FS-NEAT on D(6,18), as shown on panel

(b), where it improves even faster than the baseline NEAT with no additional sensors. This

at first may seem counter-intuitive, but after examining the networks produced by FS-NEAT

we observed that many NNs connected the inputs to only specific output nodes. NEAT net-

works always begin fully connected, and thus have a larger number of connections which

may be mutated, increasing the policy search space and reducing the chances of evolving a

working policy early in the search.

Unlike the RARS environment, PFS-NEAT shows very little improvement in the start-

ing generations in DPB. Due to feature interactions in this domain, several features must

first be included in the subset before learning progress can be made. This can be seen by

examining the plots in the right column of Figure 8. Only after PFS-NEAT is able to select

around 3 features (approximately generation 55), does its policy performance increase. We

also note that we limit Best-First search to select one feature at most per selection round in

this environment. If not, the first selected subset often contained an irrelevant feature that

hampered the converged performance of the algorithm. This limitation could be mitigated if

features were allowed to be eliminated from previously selected subsets in PFS-NEAT, and

could be the subject of a future extension. Once an appropriate feature set is determined,

PFS-NEAT achieves a near optimal fitness. The Statistical Significance A & B curves of

plots (a′) – (d′) are measured in the same way as the right column of Figure 6 in the RARS

environment. Once again, we see that PFS-NEAT is able to select subsets with a significantly

greater fraction of informative features as compared to the other feature selection algorithms,

though several of the other algorithms tend to select more lagged sensors than PFS-NEAT.

These results show that the Best-First search strategy employed by PFS-NEAT can be used

in environments with feature interaction, but it can result in periods of slow policy improve-

ment while samples are gathered to determine an informative subset. These results also help

explain why FD-NEAT and FS-NEAT both initially improve faster than PFS-NEAT in all

DPB scenarios. Both of these algorithms are able to quickly arrive at small feature subsets

containing useful information about how the problem works. We will examine these subset

compositions in more detail in Figure 9. FD-NEAT benefits from a very aggressive remove

connection weight in this environment, which allows it to rapidly identify a subset of about

5 features on average. A high remove connection weight actually reduced the performance

of FD-NEAT in RARS. One explanation for this discrepancy is that RARS requires more

specific connection weight schemes given an appropriate set of input nodes, meaning that

more generations must be spent evolving given subset size than in the DPB environment.

27

28 Steven Loscalzo, Robert Wright, and Lei Yu

NEATD(10,0)

NEAT

FS-NEAT

FD-NEAT

SAFS-NEAT

PFS-NEAT

Stat. Sig. A (see text)

Stat. Sig. B (see text)

0

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0

1

2

3

4

5

6

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(a) DPB Fitness D(6,0) (a′) DPB Features D(16,0)

0

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0

5

10

15

20

25

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(b) DPB Fitness D(6,18) (b′) DPB Features D(6,18)

0

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0

5

10

15

20

25

30

35

40

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(c) DPB Fitness D(6,36) (c′) DPB Features D(6,36)

0

2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

0 20 60 100 140 180 220 260 300

F
it
n
e
s
s

Generation

0

5

10

20

30

40

50

60

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
t
u
r
e
s

Generation

(d) DPB Fitness D(6,54) (d′) DPB Features D(6,54)

Fig. 8: Plots (a) – (d) (left column) denote the average fitness of the algorithms in comparison during the

first 300 generations of evolution for each of the DPB scenarios described in Table 1. Plots (a′) – (d′) (right

column) show the corresponding selected feature subset sizes of the four feature selection algorithms in

comparison. Curves in all plots follow the key at the top of the page. Plots (b) – (d) contain a dotted reference

curve replicating the performance of NEAT on D(6,0) (the scenario using only informative features). The Stat.

Sig. A and B curves are shown when their conditions are met with p < 0.005 in a given generation (see text

for details). Error bars denote the standard deviation of the 100 runs at each point.

28

Predictive Feature Selection for Genetic Policy Search 29

0

5

10

15

20

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

FS-NEAT All

Informative

Gaussian

Lagged

Broadcast

0

5

10

15

20

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

FD-NEAT All

Informative

Gaussian

Lagged

Broadcast

FS-NEAT DPB D(6,36) FD-NEAT DPB D(6,36)

0

5

10

15

20

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

SAFS-NEAT All

Informative

Gaussian

Lagged

Broadcast

0

5

10

15

20

0 20 60 100 140 180 220 260 300

N
u
m
b
e
r
o
f
F
e
a
tu

r
e
s

Generation

PFS-NEAT All

Informative

Gaussian

Lagged

Broadcast

SAFS-NEAT DPB D(6,36) PFS-NEAT DPB D(6,36)

Fig. 9: Selected feature subset compositions for each of the four feature selection algorithms in the DPB

D(6,36) scenario. The “All” lines denote the average subset size at each generation, “Informative” denotes the

number of relevant features selected, while the other three lines give the counts of each type of additional

feature selected. Error bars denote standard deviation.

Figure 9 examines the composition of the feature subsets selected by each of the feature

selection algorithms for D(6,36) in the DPB environment. In this scenario, FD-NEAT and

PFS-NEAT select similar numbers of features as seen in Figure 8(c′), but these subsets are

comprised of overwhelmingly distinct features. We can clearly see that PFS-NEAT selects

several informative sensors as soon as it can (given the stagnation parameters), and selects

very few other features for the remainder of the evolutionary policy search. The other three

algorithms also exhibit a selection plateau around generation 100, where they are able to

solve many of the runs after suitably informative subsets have been constructed. The other

three algorithms also tend to select lagged sensors, and especially FD-NEAT, which prefers

them over the designed informative sensors. From the fitness results of FD-NEAT we can

conclude that several of the lagged sensors are useful to the NEAT process and can be

more useful to the policy search than the informative sensors. Despite their usefulness, PFS-

NEAT does not select them since they do not evaluate highly on the 1-step reward and

transition relevance measures used to guide the feature subset search. This result serves to

illustrate a general limitation of the PFS-NEAT feature evaluation heuristic: if an environ-

ment only has a delayed reward signal or highly stochastic transition dynamics, the feature

relevance determination can be inaccurate and lead to poor performance. SAFS-NEAT and

FS-NEAT both select lagged sensors while following their selection heuristics, but both pre-

fer broadcast sensors. Selecting both informative and lagged sensors early allows for rapid

fitness improvements in the early generations, but the addition of too many of these addi-

tional sensors ultimately impedes the progress of the policy search in this environment.

29

30 Steven Loscalzo, Robert Wright, and Lei Yu

4.2.3 Results Summary

The results presented in Sections 4.2.1 & 4.2.2 have served to illustrate several key points:

(i) additional features can prohibit the learning of a good policy;

(ii) PFS-NEAT is able to effectively exclude many additional features from the search space,

leading to good selected feature subsets and fit policies;

(iii) PFS-NEAT is more generally effective than FS-NEAT, SAFS-NEAT, and FD-NEAT,

though there are situations where one or more may yield comparable results.

From these points we can conclude that PFS-NEAT can be successfully used to constrain

a policy search space by reducing the number of input features to consider. This algorithm

has been demonstrated to allow the NEAT genetic policy search technique to scale to envi-

ronments with high-dimensional state spaces.

5 Discussion and Conclusion

In this work, we have proposed a novel feature selection framework for genetic policy search

algorithms, PFS-NEAT, that automatically discovers a good set of features for learning a

control policy. To achieve this, it interleaves a Best-First search strategy with the NEAT pol-

icy search algorithm, and applies a computationally efficient method to evaluate the good-

ness of features via previously collected samples. We have provided a detailed study on the

characteristics of the NEAT algorithm, with and without feature selection, and have demon-

strated that feature selection can allow NEAT to scale to problems that include many addi-

tional features. We also show that the feature selection framework proposed here is able to

consistently select a small subset primarily comprised of relevant features, enabling NEAT

to search a restricted subset of policies.

One immediate direction of future work is motivated from our experimental study. It

is clear that FS-NEAT performs well when the search space contains more relevant fea-

tures than irrelevant ones. It and FD-NEAT can both take advantage of sensors that were

not directly thought to contribute to successful policies as in the DPB domain. The feature

evaluation strategy of PFS-NEAT is able to score features based on their predicted value

to a successful policy. We hypothesize that PFS-NEAT could be used in conjunction with

the evolutionary selection algorithms to boost the quality of the candidate pool of input fea-

tures that they have access to, while allowing them to explore many different combinations

of these input features. More broadly, we can consider how to incorporate the predictive

feature selection idea with other direct policy search algorithms or RL methods in general,

outside of the genetic policy search context. There are two main areas that we rely on NEAT

for the approach presented in this paper: determining when to select features, and how to

insert them into an existing policy function. The stagnation criterion we used must track

fitness changes of the champion NN from NEAT’s population, something that would not

exist in non-genetic policy search algorithms. Instead, for gradient policy search methods

such as the one presented by Deisenroth and Rasmussen (2011), we could decide to search

for more features once the gradient changes drop below some threshold. Preserving existing

performance after incorporating new features depends on the representation of the policy

function used by the algorithm, and so new transfer methods may need to be explored. In

general, one could create a training data set using the current best policy function, and train

the new function which includes the updated feature subset on that data set. There would

30

Predictive Feature Selection for Genetic Policy Search 31

be an additional time and computation penalty here, but the samples could be generated

synthetically to avoid an additional sampling overhead.

We briefly discussed some alternatives to the stagnation criterion for determining when

to select features in Section 3.4. Stagnation is intrinsically tied to fitness in our work, but

recent research has shown the validity of searching for non-fitness criteria, and these meth-

ods may present a viable means to further the subset search (Mouret and Doncieux, 2012).

Our fundamental goal with this work is to enable genetic policy search algorithms to find fit

policies by constraining the policy search to consider only subsets of the feature space that

are found to be relevant. If a diversity procedure like Novelty Search was adopted (Lehman

and Stanley, 2011), it may be possible to consider novel behavior-producing networks in-

duced by different feature subsets. This may allow genetic policy search to rapidly find fit

policies by implicitly performing feature selection to promote genetic diversity instead of

fitness, and is an area to consider for future study.

The Predictive Feature Selection framework’s core iterative process of altering the fea-

ture space can be viewed as automatically guiding the evolutionary process through a series

of simpler approximations to arrive at a fit policy for the task of interest. In this way, it bears

a resemblance to the deception avoidance work of Gomez and Miikkulainen (1997), and is

related to the larger world of transfer learning in RL (Taylor and Stone, 2009). PFS-NEAT is

optimistic that the genetic search will benefit from the inclusion of features found to be rel-

evant by the evaluation criteria, but this process does not actively seek to avoid deceptive

learning situations as done in Gomez and Miikkulainen (1997). An open future direction is

to determine a best progression of feature subsets, and may be able to leverage concepts and

techniques from the emerging field of Curriculum Learning (Bengio et al, 2009).

As illustrated in this work, feature selection can lead to significant benefits to genetic

policy search algorithms, allowing to scale them to high-dimensional state spaces such as

those found in many real world control problems. There are many possible areas of inclusion

besides the direct policy search case presented in this work, and we believe investigating

the interaction between RL and feature selection in these different scenarios will lead to

breakthroughs in the applicability of RL algorithms.

6 Acknowledgements

This work was performed under 13-RI-CRADA-13, and was supported in part through com-

putational resources provided by the U.S. DoD HPCMP AFRL/RI Affiliated Resource Cen-

ter. The authors would like to thank the anonymous reviewers for their helpful comments

and suggestions, and Kevin Acunto for his work porting the RARS environment to Java.

References

Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from

demonstration. Robot Auton Syst 57:469–483

Bellman R (2003) Dynamic Programming. Dover Publications

Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum learning. In: Proceedings

of the 26th annual international conference on machine learning, ACM, pp 41–48

Böhm N, Kkai G, Mandl S (2004) Evolving a heuristic function for the game of tetris.

In: Lernen, Wissensentdeckung und Adaptivität (LWA), Humbold-Universität Berlin, pp

118–122

31

32 Steven Loscalzo, Robert Wright, and Lei Yu

Boutilier C, Dean T, Hanks S (1999) Decision-theoretic planning: Structural assumptions

and computational leverage. JAIR 11:1–94

Cannady J (2000) Next generation intrusion detection: Autonomous reinforcement learning

of network attacks. In: Proceedings of the 23rd National Information Systems Secuity

Conference, pp 1–12

Castelletti A, Galelli S, Restelli M, Soncini-Sessa R (2011) Tree-based variable selection

for dimensionality reduction of large-scale control systems. In: Adaptive Dynamic Pro-

gramming And Reinforcement Learning (ADPRL), 2011 IEEE Symposium on, IEEE, pp

62–69

Cliff D, Miller G (1995) Tracking the red queen: Measurements of adaptive progress in co-

evolutionary simulations. In: Morn F, Moreno A, Merelo J, Chacn P (eds) Advances in

Artificial Life, Lecture Notes in Computer Science, vol 929, Springer Berlin Heidelberg,

pp 200–218, DOI 10.1007/3-540-59496-5 300

Deisenroth M, Rasmussen C (2011) Pilco: A model-based and data-efficient approach to

policy search. In: Getoor L, Scheffer T (eds) Proceedings of the 28th International Con-

ference on Machine Learning (ICML-11), ACM, New York, NY, USA, ICML ’11, pp

465–472

Devijver P, Kittler J (1982) Pattern Recognition: A Statistical Approach. Prentice Hall In-

ternational

Dietterich TG (1998) The maxq method for hierarchical reinforcement learning. In: In Pro-

ceedings of the Fifteenth International Conference on Machine Learning, Morgan Kauf-

mann, pp 118–126

Diuk C, Li L, Leffler B (2009) The adaptive k-meteorologists problem and its application to

structure learning and feature selection in reinforcement learning. In: Bottou L, Littman M

(eds) Proceedings of the 26th International Conference on Machine Learning, Omnipress,

Montreal, pp 249–256

Doroodgar B, Nejat G (2010) A hierarchical reinforcement learning based control architec-

ture for semi-autonomous rescue robots in cluttered environments. In: 2010 IEEE Con-

ference on Automation Science and Engineering (CASE), pp 948–953

Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch mode reinforcement learning. JMLR

6:503–556

Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal func-

tion optimization. In: Proceedings of the Second International Conference on Genetic

Algorithms on Genetic Algorithms and Their Application, L. Erlbaum Associates Inc.,

Hillsdale, NJ, USA, pp 41–49

Gomez F, Miikkulainen R (1997) Incremental evolution of complex general behavior. Adap-

tive Behavior 5:5–317

Gomez FJ, Miikkulainen R (1999) Solving non-markovian control tasks with neuroevolu-

tion. In: In Proceedings of the 16th International Joint Conference on Artificial Intelli-

gence, Morgan Kaufmann, pp 1356–1361

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Journal of

Machine Learning Research 3:1157–1182

Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification

using support vector machines. Machine Learning 46:389–422

Hachiya H, Sugiyama M (2010) Feature selection for reinforcement learning: Evaluating

implicit state-reward dependency via conditional mutual information. In: Proceedings of

the ECML, pp 474–489

Hall M (1999) Correlation based feature selection for machine learning. PhD thesis, Univer-

sity of Waikato, Dept. of Computer Science

32

Predictive Feature Selection for Genetic Policy Search 33

Jolliffe IT (2010) Principal Component Analysis, Second Edition. Springer

Jung T, Stone P (2009) Feature selection for value function approximation using bayesian

model selection. In: Proceedings of the European Conference on Machine Learning and

Knowledge Discovery in Databases, pp 660–675

Knowles JD, Watson RA, Corne DW (2001) Reducing local optima in single-objective prob-

lems by multi-objectivization. In: Zitzler E, Thiele L, Deb K, Coello Coello C, Corne D

(eds) Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science, vol

1993, Springer Berlin Heidelberg, pp 269–283, DOI 10.1007/3-540-44719-9 19

Kolter JZ, Ng AY (2009) Regularization and feature selection in least-squares temporal

difference learning. In: Proceedings of the 26th Annual International Conference on Ma-

chine Learning, pp 521–528

Konidaris G, Barto A (2009) Efficient skill learning using abstraction selection. In: Proceed-

ings of the 21st international jont conference on Artifical intelligence, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, pp 1107–1112

Konidaris G, Kuindersma S, Barto A, Grupen R (2010) Constructing skill trees for rein-

forcement learning agents from demonstration trajectories. In: NIPS 23, pp 1162–1170

Kveton B, Hauskrecht M, Guestrin C (2006) Solving factored MDPs with hybrid state and

action variables. J Artif Int Res 27:153–201

Lazaric A, Restelli M, Bonarini A (2007) Reinforcement learning in continuous action

spaces through sequential monte carlo methods. In: Advances in Neural Information Pro-

cessing Systems, pp 833–840

Lehman J, Stanley KO (2011) Abandoning objectives: Evolution through the search for

novelty alone. Evolutionary computation 19(2):189–223

Li L, Walsh TJ, Littman ML (2006) Towards a unified theory of state abstraction for MDPs.

In: In Proceedings of the Ninth International Symposium on Artificial Intelligence and

Mathematics, pp 531–539

Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and

clustering. IEEE Transactions on Knowledge and Data Engineering 17(4):491–502

Loscalzo S, Wright R, Acunto K, Yu L (2012) Sample aware embedded feature selection for

reinforcement learning. In: Proceedings of GECCO, pp 879–886

Mahadevan S (2005) Representation policy iteration. In: Proceedings of the Proceedings of

the Twenty-First Conference Annual Conference on Uncertainty in Artificial Intelligence

(UAI-05), AUAI Press, Arlington, Virginia, pp 372–379

March JG (1991) Exploration and exploitation in organizational learning. In: Organizational

Science, vol 2(1), pp 71–87

Melo FS, Lopes M (2008) Fitted natural actor-critic: A new algorithm for continuous state-

action MDPs. In: ECML/PKDD(2), pp 66–81

Mouret JB, Doncieux S (2012) Encouraging behavioral diversity in evolutionary robotics:

An empirical study. Evol Comput 20(1):91–133, DOI 10.1162/EVCO a 00048

Nouri A, Littman M (2010) Dimension reduction and its application to model-based explo-

ration in continuous spaces. Machine Learning 81:85–98

Parr R, Painter-Wakefield C, Li L, Littman ML (2007) Analyzing feature generation for

value-function approximation. In: ICML, pp 737–744

Pazis J, Lagoudakis MG (2009) Binary action search for learning continuous-action con-

trol policies. In: Proceedings of the 26th Annual International Conference on Machine

Learning, ACM, New York, NY, USA, ICML ’09, pp 793–800

Petrik M, Taylor G, Parr R, Zilberstein S (2010) Feature selection using regularization in

approximate linear programs for markov decision processes. In: Proceedings of the 27th

International Conference on Machine Learning, pp 871–878

33

34 Steven Loscalzo, Robert Wright, and Lei Yu

Powell WB (2011) Approximate Dynamic Programming: Solving the Curses of Dimension-

ality, 2nd Edition. Wiley

Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. Wiley-Interscience

Servin A, Kudenko D (2008) Multi-agent reinforcement learning for intrusion detection:

A case study and evaluation. In: Proceedings of the European Conference on Artificial

Intelligence, pp 873–874

Sher GI (2012) Handbook of Neuroevolution Through Erlang. Springer

Stanley KO, Miikkulainen R (2002) Efficient reinforcement learning through evolving neu-

ral network topologies. In: Proceedings of GECCO, pp 569–577

Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press

Tan M, Hartley M, Bister M, Deklerck R (2009) Automated feature selection in neuroevo-

lution. Evolutionary Intelligence 1(4):271–292

Tan M, Deklerck R, Jansen B, Cornelis J (2012) Analysis of a feature-deselective neuroevo-

lution classifier (fd-neat) in a computer-aided lung nodule detection system for ct images.

In: Soule T, Moore JH (eds) GECCO (Companion), ACM, pp 539–546

Taylor ME, Stone P (2009) Transfer learning for reinforcement learning domains: A survey.

JMLR 10:1633–1685

Tesauro G, Das R, Chan H, Kephart JO, Levine D, III FLR, Lefurgy C (2007) Managing

power consumption and performance of computing systems using reinforcement learning.

In: NIPS

Vigorito CM, Barto AG (2009) Incremental structure learning in factored MDPs with con-

tinuous states and actions. Tech. rep., University of Massachusetts Amherst - Department

of Computer Science

Watkins CJCH, Dayan P (1992) Technical note q-learning. Machine Learning 8:279–292

Whiteson S, Stone P (2006) Evolutionary function approximation for reinforcement learn-

ing. Journal of Machine Learning Research 7:877–917

Whiteson S, Stone P, Stanley KO (2005) Automatic feature selection in neuroevolution. In:

Proceedings of GECCO, pp 1225–1232

Wright R, Loscalzo S, Yu L (2011) Embedded incremental feature selection for reinforce-

ment learning. In: ICAART 2011 - Proceedings of the 3rd International Conference on

Agents and Artificial Intelligence, Volume 1 - Artificial Intelligence, Rome, Italy, January

28-30, 2011, pp 263–268

Xu L, Yan P, Chang T (1988) Best first strategy for feature selection. In: Proceedings of the

Ninth International Conference on Pattern Recognition, pp 706–708

34

